import requests
import json
headers = {"Authorization": "Bearer YOUR_API_KEY"}
# Fetch the taxonomy, stream into a JSON Lines file
with requests.get("https://api.globalwebindex.com/v3/taxonomy", headers=headers, stream=True) as response:
response.raise_for_status() # Check for error status
with open("gwi_taxonomy.jsonl", "w") as file: # Open a file for caching
buffer = "" # Initialize a buffer
for chunk in response.iter_content(chunk_size=8192): # Iterate over response chunks
buffer += chunk.decode('utf-8', errors='ignore') # Add decoded chunk to buffer
while True:
try:
obj, index = json.JSONDecoder().raw_decode(buffer) # Get 1st object & its end index
file.write(json.dumps(obj) + "\n") # Write object, add line break
buffer = buffer[index:].lstrip() # Remove object from buffer
except ValueError: # - If no object is found
break # add another chunk to buffer
print("Taxonomy cached successfully!")
Question Code: q47a
Name: Reasons for Using Social Media (To Q3 2020)
Description: What are your main reasons for using social media?
Namespace: core
Datapoints: [{'datapoint': 'q47a_17', 'name': 'To organize social events (To Q3 2016)', 'order': {'value': 17}}, {'datapoint': 'q47a_11', 'name': 'To follow celebrities / celebrity news', 'order': {'value': 4}}, {'datapoint': 'q47a_6', 'name': 'To find funny or entertaining content', 'order': {'value': 3}}, {'datapoint': 'q47a_9', 'name': 'Because a lot of my friends are on them'}, {'datapoint': 'q47a_8', 'name': 'To fill up spare time', 'order': {'value': 2}}, {'datapoint': 'q47a_4', 'name': 'To meet new people', 'order': {'value': 6}}, {'datapoint': 'q47a_16', 'name': 'To network for work', 'order': {'value': 7}}, {'datapoint': 'q47a_14', 'name': 'To research / find products to buy', 'order': {'value': 9}}, {'datapoint': 'q47a_5', 'name': 'To share photos or videos with others', 'order': {'value': 12}}, {'datapoint': 'q47a_7', 'name': 'To stay up-to-date with news and current events', 'order': {'value': 14}}, {'datapoint': 'q47a_19', 'name': 'To watch / follow sports events', 'order': {'value': 15}}, {'datapoint': 'q47a_12', 'name': 'They are just one of the sites I always tend to visit (To Q3 2016)', 'order': {'value': 16}}, {'datapoint': 'q47a_15', 'name': 'To promote my work (To Q3 2016)', 'order': {'value': 18}}, {'datapoint': 'q47a_2', 'name': 'To share my opinion', 'order': {'value': 11}}, {'datapoint': 'q47a_3', 'name': "To share details of what I'm doing in my daily life", 'order': {'value': 10}}, {'datapoint': 'q47a_1', 'name': 'To stay in touch with what my friends are doing', 'order': {'value': 13}}, {'datapoint': 'q47a_10', 'name': 'General networking with other people', 'order': {'value': 1}}, {'datapoint': 'q47a_13', 'name': "To make sure I don't miss out on anything", 'order': {'value': 5}}, {'datapoint': 'q47a_18', 'name': 'To promote / support charitable causes', 'order': {'value': 8}}]
Question Code: q42011
Name: Named Social Media / Messaging Services Used
Description: How often do you visit or use these services?
Namespace: core
Datapoints: [{'datapoint': 'q42011_7', 'name': 'Likee (Select Markets Only)', 'order': {'value': 368}}, {'datapoint': 'q42011_31', 'name': 'Snapchat', 'order': {'value': 386}}, {'datapoint': 'q42011_48', 'name': 'Telegram Messenger', 'order': {'value': 390}}, {'datapoint': 'q42011_35', 'name': 'Viadeo (Select Markets Only)', 'order': {'value': 396}}, {'datapoint': 'q42011_44', 'name': 'Skype', 'order': {'value': 385}}, {'datapoint': 'q42011_32102', 'name': 'Clubhouse', 'order': {'value': 349}}, {'datapoint': 'q42011_18', 'name': 'Inke (China Only)', 'order': {'value': 359}}, {'datapoint': 'q42011_34', 'name': 'TikTok', 'order': {'value': 393}}, {'datapoint': 'q42011_38', 'name': 'Gadu-Gadu (GG) (Poland Only)', 'order': {'value': 356}}, {'datapoint': 'q42011_43', 'name': 'LINE', 'order': {'value': 369}}, {'datapoint': 'q42011_22103', 'name': 'ShareChat (India Only)', 'order': {'value': 382}}, {'datapoint': 'q42011_46', 'name': 'SOMA Messenger (Egypt Only)', 'order': {'value': 387}}, {'datapoint': 'q42011_49', 'name': 'Tencent QQ (China Only)', 'order': {'value': 391}}, {'datapoint': 'q42011_36', 'name': 'Yizhibo (China Only)', 'order': {'value': 406}}, {'datapoint': 'q42011_55', 'name': 'Apple iMessage', 'order': {'value': 342}}, {'datapoint': 'q42011_58', 'name': 'Signal (Select Markets Only)', 'order': {'value': 383}}, {'datapoint': 'q42011_54', 'name': 'Zalo (Vietnam Only)', 'order': {'value': 407}}, {'datapoint': 'q42011_21', 'name': "Copains d'Avant (France Only)", 'order': {'value': 350}}, {'datapoint': 'q42011_42105', 'name': 'Yalla (Egypt, Saudi Arabia and UAE Only)', 'order': {'value': 405}}, {'datapoint': 'q42011_56', 'name': 'Byte (Select Markets Only)', 'order': {'value': 347}}, {'datapoint': 'q42011_19', 'name': '5channel (Japan Only)', 'order': {'value': 341}}, {'datapoint': 'q42011_57', 'name': 'Discord', 'order': {'value': 352}}, {'datapoint': 'q42011_2', 'name': 'Bigo (UAE Only)', 'order': {'value': 345}}, {'datapoint': 'q42011_28', 'name': 'Odnoklassniki (Russia Only)', 'order': {'value': 377}}, {'datapoint': 'q42011_32101', 'name': 'MX TakaTak (India Only)', 'order': {'value': 374}}, {'datapoint': 'q42011_42218', 'name': 'BeReal (Select Markets Only)', 'order': {'value': 344}}, {'datapoint': 'q42011_4', 'name': 'Helo (India Only)', 'order': {'value': 357}}, {'datapoint': 'q42011_8', 'name': 'Meipai (China Only)', 'order': {'value': 372}}, {'datapoint': 'q42011_22316', 'name': 'Mastodon', 'order': {'value': 371}}, {'datapoint': 'q42011_41', 'name': 'Kakao Talk (South Korea Only)', 'order': {'value': 362}}, {'datapoint': 'q42011_42', 'name': 'kik Messenger', 'order': {'value': 363}}, {'datapoint': 'q42011_51', 'name': 'WeChat', 'order': {'value': 400}}, {'datapoint': 'q42011_1', 'name': 'Badoo (To Q2 2024)', 'order': {'value': 408}}, {'datapoint': 'q42011_12101', 'name': 'Triller (USA Only)', 'order': {'value': 394}}, {'datapoint': 'q42011_12373', 'name': 'WeAre8 (Australia, UK and USA Only)', 'order': {'value': 399}}, {'datapoint': 'q42011_9', 'name': 'Neighbourly (New Zealand Only)', 'order': {'value': 375}}, {'datapoint': 'q42011_16', 'name': 'Xiaohongshu (China, Malaysia and Singapore Only)', 'order': {'value': 403}}, {'datapoint': 'q42011_32103', 'name': 'Chingari (India Only)', 'order': {'value': 348}}, {'datapoint': 'q42011_6', 'name': 'KakaoStory (South Korea Only)', 'order': {'value': 361}}, {'datapoint': 'q42011_32213', 'name': 'Koo (Bulgaria and India Only)', 'order': {'value': 364}}, {'datapoint': 'q42011_26', 'name': 'LinkedIn', 'order': {'value': 370}}, {'datapoint': 'q42011_27', 'name': 'Nextdoor (Select Markets Only)', 'order': {'value': 376}}, {'datapoint': 'q42011_10', 'name': 'nk.pl (Poland Only, to Q2 2023)', 'order': {'value': 409}}, {'datapoint': 'q42011_47', 'name': 'Tango', 'order': {'value': 388}}, {'datapoint': 'q42011_50', 'name': 'Viber', 'order': {'value': 397}}, {'datapoint': 'q42011_32104', 'name': 'Moj (India Only)', 'order': {'value': 373}}, {'datapoint': 'q42011_13', 'name': 'Tumblr', 'order': {'value': 395}}, {'datapoint': 'q42011_25', 'name': 'Instagram', 'order': {'value': 360}}, {'datapoint': 'q42011_14', 'name': 'X', 'order': {'value': 402}}, {'datapoint': 'q42011_5', 'name': 'Imgur', 'order': {'value': 358}}, {'datapoint': 'q42011_30', 'name': 'Reddit', 'order': {'value': 381}}, {'datapoint': 'q42011_32112', 'name': 'Kuaishou (Select Markets Only)', 'order': {'value': 365}}, {'datapoint': 'q42011_20', 'name': 'Baidu Tieba (China Only)', 'order': {'value': 343}}, {'datapoint': 'q42011_29', 'name': 'Qzone (China Only)', 'order': {'value': 380}}, {'datapoint': 'q42011_17', 'name': 'XING (Austria and Germany Only)', 'order': {'value': 404}}, {'datapoint': 'q42011_53', 'name': 'WhatsApp', 'order': {'value': 401}}, {'datapoint': 'q42011_45', 'name': 'SNOW (Select Markets Only) (Up to Q2 2022)', 'order': {'value': 410}}, {'datapoint': 'q42011_40', 'name': 'Houseparty (To Q2 2021)', 'order': {'value': 411}}, {'datapoint': 'q42011_15', 'name': 'VK (Russia & Czech Republic Only)', 'order': {'value': 398}}, {'datapoint': 'q42011_42397', 'name': 'Threads', 'order': {'value': 392}}, {'datapoint': 'q42011_32', 'name': 'Taringa (Select Markets Only)', 'order': {'value': 389}}, {'datapoint': 'q42011_3', 'name': 'Facebook', 'order': {'value': 354}}, {'datapoint': 'q42011_12205', 'name': 'Kumu (Philippines Only)', 'order': {'value': 366}}, {'datapoint': 'q42011_22326', 'name': 'Dewu (China Only)', 'order': {'value': 351}}, {'datapoint': 'q42011_32433', 'name': 'Quora', 'order': {'value': 379}}, {'datapoint': 'q42011_11', 'name': 'Pinterest', 'order': {'value': 378}}, {'datapoint': 'q42011_32449', 'name': 'BlueSky', 'order': {'value': 346}}, {'datapoint': 'q42011_22413', 'name': 'Lemon8 (Select Markets Only)', 'order': {'value': 367}}, {'datapoint': 'q42011_12', 'name': 'Sina Weibo (China Only)', 'order': {'value': 384}}, {'datapoint': 'q42011_37', 'name': 'Facebook Messenger', 'order': {'value': 355}}, {'datapoint': 'q42011_23', 'name': 'Douyin Huoshan (China Only)', 'order': {'value': 353}}]
Suffixes: [{'suffix': '2', 'name': 'Daily', 'order': {'value': 2}}, {'suffix': '1', 'name': 'More than once a day', 'order': {'value': 1}}, {'suffix': '3', 'name': 'Weekly', 'order': {'value': 3}}, {'suffix': '4', 'name': 'Monthly', 'order': {'value': 4}}]
...
import requests
import json
headers = {"Authorization": "Bearer YOUR_API_KEY"}
# Fetch the taxonomy, stream into a JSON Lines file
with requests.get("https://api.globalwebindex.com/v3/taxonomy", headers=headers, stream=True) as response:
response.raise_for_status() # Check for error status
with open("gwi_taxonomy.jsonl", "w") as file: # Open a file for caching
buffer = "" # Initialize a buffer
for chunk in response.iter_content(chunk_size=8192): # Iterate over response chunks
buffer += chunk.decode('utf-8', errors='ignore') # Add decoded chunk to buffer
while True:
try:
obj, index = json.JSONDecoder().raw_decode(buffer) # Get 1st object & its end index
file.write(json.dumps(obj) + "\n") # Write object, add line break
buffer = buffer[index:].lstrip() # Remove object from buffer
except ValueError: # - If no object is found
break # add another chunk to buffer
print("Taxonomy cached successfully!")
Question Code: q47a
Name: Reasons for Using Social Media (To Q3 2020)
Description: What are your main reasons for using social media?
Namespace: core
Datapoints: [{'datapoint': 'q47a_17', 'name': 'To organize social events (To Q3 2016)', 'order': {'value': 17}}, {'datapoint': 'q47a_11', 'name': 'To follow celebrities / celebrity news', 'order': {'value': 4}}, {'datapoint': 'q47a_6', 'name': 'To find funny or entertaining content', 'order': {'value': 3}}, {'datapoint': 'q47a_9', 'name': 'Because a lot of my friends are on them'}, {'datapoint': 'q47a_8', 'name': 'To fill up spare time', 'order': {'value': 2}}, {'datapoint': 'q47a_4', 'name': 'To meet new people', 'order': {'value': 6}}, {'datapoint': 'q47a_16', 'name': 'To network for work', 'order': {'value': 7}}, {'datapoint': 'q47a_14', 'name': 'To research / find products to buy', 'order': {'value': 9}}, {'datapoint': 'q47a_5', 'name': 'To share photos or videos with others', 'order': {'value': 12}}, {'datapoint': 'q47a_7', 'name': 'To stay up-to-date with news and current events', 'order': {'value': 14}}, {'datapoint': 'q47a_19', 'name': 'To watch / follow sports events', 'order': {'value': 15}}, {'datapoint': 'q47a_12', 'name': 'They are just one of the sites I always tend to visit (To Q3 2016)', 'order': {'value': 16}}, {'datapoint': 'q47a_15', 'name': 'To promote my work (To Q3 2016)', 'order': {'value': 18}}, {'datapoint': 'q47a_2', 'name': 'To share my opinion', 'order': {'value': 11}}, {'datapoint': 'q47a_3', 'name': "To share details of what I'm doing in my daily life", 'order': {'value': 10}}, {'datapoint': 'q47a_1', 'name': 'To stay in touch with what my friends are doing', 'order': {'value': 13}}, {'datapoint': 'q47a_10', 'name': 'General networking with other people', 'order': {'value': 1}}, {'datapoint': 'q47a_13', 'name': "To make sure I don't miss out on anything", 'order': {'value': 5}}, {'datapoint': 'q47a_18', 'name': 'To promote / support charitable causes', 'order': {'value': 8}}]
Question Code: q42011
Name: Named Social Media / Messaging Services Used
Description: How often do you visit or use these services?
Namespace: core
Datapoints: [{'datapoint': 'q42011_7', 'name': 'Likee (Select Markets Only)', 'order': {'value': 368}}, {'datapoint': 'q42011_31', 'name': 'Snapchat', 'order': {'value': 386}}, {'datapoint': 'q42011_48', 'name': 'Telegram Messenger', 'order': {'value': 390}}, {'datapoint': 'q42011_35', 'name': 'Viadeo (Select Markets Only)', 'order': {'value': 396}}, {'datapoint': 'q42011_44', 'name': 'Skype', 'order': {'value': 385}}, {'datapoint': 'q42011_32102', 'name': 'Clubhouse', 'order': {'value': 349}}, {'datapoint': 'q42011_18', 'name': 'Inke (China Only)', 'order': {'value': 359}}, {'datapoint': 'q42011_34', 'name': 'TikTok', 'order': {'value': 393}}, {'datapoint': 'q42011_38', 'name': 'Gadu-Gadu (GG) (Poland Only)', 'order': {'value': 356}}, {'datapoint': 'q42011_43', 'name': 'LINE', 'order': {'value': 369}}, {'datapoint': 'q42011_22103', 'name': 'ShareChat (India Only)', 'order': {'value': 382}}, {'datapoint': 'q42011_46', 'name': 'SOMA Messenger (Egypt Only)', 'order': {'value': 387}}, {'datapoint': 'q42011_49', 'name': 'Tencent QQ (China Only)', 'order': {'value': 391}}, {'datapoint': 'q42011_36', 'name': 'Yizhibo (China Only)', 'order': {'value': 406}}, {'datapoint': 'q42011_55', 'name': 'Apple iMessage', 'order': {'value': 342}}, {'datapoint': 'q42011_58', 'name': 'Signal (Select Markets Only)', 'order': {'value': 383}}, {'datapoint': 'q42011_54', 'name': 'Zalo (Vietnam Only)', 'order': {'value': 407}}, {'datapoint': 'q42011_21', 'name': "Copains d'Avant (France Only)", 'order': {'value': 350}}, {'datapoint': 'q42011_42105', 'name': 'Yalla (Egypt, Saudi Arabia and UAE Only)', 'order': {'value': 405}}, {'datapoint': 'q42011_56', 'name': 'Byte (Select Markets Only)', 'order': {'value': 347}}, {'datapoint': 'q42011_19', 'name': '5channel (Japan Only)', 'order': {'value': 341}}, {'datapoint': 'q42011_57', 'name': 'Discord', 'order': {'value': 352}}, {'datapoint': 'q42011_2', 'name': 'Bigo (UAE Only)', 'order': {'value': 345}}, {'datapoint': 'q42011_28', 'name': 'Odnoklassniki (Russia Only)', 'order': {'value': 377}}, {'datapoint': 'q42011_32101', 'name': 'MX TakaTak (India Only)', 'order': {'value': 374}}, {'datapoint': 'q42011_42218', 'name': 'BeReal (Select Markets Only)', 'order': {'value': 344}}, {'datapoint': 'q42011_4', 'name': 'Helo (India Only)', 'order': {'value': 357}}, {'datapoint': 'q42011_8', 'name': 'Meipai (China Only)', 'order': {'value': 372}}, {'datapoint': 'q42011_22316', 'name': 'Mastodon', 'order': {'value': 371}}, {'datapoint': 'q42011_41', 'name': 'Kakao Talk (South Korea Only)', 'order': {'value': 362}}, {'datapoint': 'q42011_42', 'name': 'kik Messenger', 'order': {'value': 363}}, {'datapoint': 'q42011_51', 'name': 'WeChat', 'order': {'value': 400}}, {'datapoint': 'q42011_1', 'name': 'Badoo (To Q2 2024)', 'order': {'value': 408}}, {'datapoint': 'q42011_12101', 'name': 'Triller (USA Only)', 'order': {'value': 394}}, {'datapoint': 'q42011_12373', 'name': 'WeAre8 (Australia, UK and USA Only)', 'order': {'value': 399}}, {'datapoint': 'q42011_9', 'name': 'Neighbourly (New Zealand Only)', 'order': {'value': 375}}, {'datapoint': 'q42011_16', 'name': 'Xiaohongshu (China, Malaysia and Singapore Only)', 'order': {'value': 403}}, {'datapoint': 'q42011_32103', 'name': 'Chingari (India Only)', 'order': {'value': 348}}, {'datapoint': 'q42011_6', 'name': 'KakaoStory (South Korea Only)', 'order': {'value': 361}}, {'datapoint': 'q42011_32213', 'name': 'Koo (Bulgaria and India Only)', 'order': {'value': 364}}, {'datapoint': 'q42011_26', 'name': 'LinkedIn', 'order': {'value': 370}}, {'datapoint': 'q42011_27', 'name': 'Nextdoor (Select Markets Only)', 'order': {'value': 376}}, {'datapoint': 'q42011_10', 'name': 'nk.pl (Poland Only, to Q2 2023)', 'order': {'value': 409}}, {'datapoint': 'q42011_47', 'name': 'Tango', 'order': {'value': 388}}, {'datapoint': 'q42011_50', 'name': 'Viber', 'order': {'value': 397}}, {'datapoint': 'q42011_32104', 'name': 'Moj (India Only)', 'order': {'value': 373}}, {'datapoint': 'q42011_13', 'name': 'Tumblr', 'order': {'value': 395}}, {'datapoint': 'q42011_25', 'name': 'Instagram', 'order': {'value': 360}}, {'datapoint': 'q42011_14', 'name': 'X', 'order': {'value': 402}}, {'datapoint': 'q42011_5', 'name': 'Imgur', 'order': {'value': 358}}, {'datapoint': 'q42011_30', 'name': 'Reddit', 'order': {'value': 381}}, {'datapoint': 'q42011_32112', 'name': 'Kuaishou (Select Markets Only)', 'order': {'value': 365}}, {'datapoint': 'q42011_20', 'name': 'Baidu Tieba (China Only)', 'order': {'value': 343}}, {'datapoint': 'q42011_29', 'name': 'Qzone (China Only)', 'order': {'value': 380}}, {'datapoint': 'q42011_17', 'name': 'XING (Austria and Germany Only)', 'order': {'value': 404}}, {'datapoint': 'q42011_53', 'name': 'WhatsApp', 'order': {'value': 401}}, {'datapoint': 'q42011_45', 'name': 'SNOW (Select Markets Only) (Up to Q2 2022)', 'order': {'value': 410}}, {'datapoint': 'q42011_40', 'name': 'Houseparty (To Q2 2021)', 'order': {'value': 411}}, {'datapoint': 'q42011_15', 'name': 'VK (Russia & Czech Republic Only)', 'order': {'value': 398}}, {'datapoint': 'q42011_42397', 'name': 'Threads', 'order': {'value': 392}}, {'datapoint': 'q42011_32', 'name': 'Taringa (Select Markets Only)', 'order': {'value': 389}}, {'datapoint': 'q42011_3', 'name': 'Facebook', 'order': {'value': 354}}, {'datapoint': 'q42011_12205', 'name': 'Kumu (Philippines Only)', 'order': {'value': 366}}, {'datapoint': 'q42011_22326', 'name': 'Dewu (China Only)', 'order': {'value': 351}}, {'datapoint': 'q42011_32433', 'name': 'Quora', 'order': {'value': 379}}, {'datapoint': 'q42011_11', 'name': 'Pinterest', 'order': {'value': 378}}, {'datapoint': 'q42011_32449', 'name': 'BlueSky', 'order': {'value': 346}}, {'datapoint': 'q42011_22413', 'name': 'Lemon8 (Select Markets Only)', 'order': {'value': 367}}, {'datapoint': 'q42011_12', 'name': 'Sina Weibo (China Only)', 'order': {'value': 384}}, {'datapoint': 'q42011_37', 'name': 'Facebook Messenger', 'order': {'value': 355}}, {'datapoint': 'q42011_23', 'name': 'Douyin Huoshan (China Only)', 'order': {'value': 353}}]
Suffixes: [{'suffix': '2', 'name': 'Daily', 'order': {'value': 2}}, {'suffix': '1', 'name': 'More than once a day', 'order': {'value': 1}}, {'suffix': '3', 'name': 'Weekly', 'order': {'value': 3}}, {'suffix': '4', 'name': 'Monthly', 'order': {'value': 4}}]
...
/v3/taxonomy
endpoint. This endpoint returns all categories, questions,
datapoints and suffixes in the structured format of JSON Lines.
curl -X GET "https://api.globalwebindex.com/v3/taxonomy" \
-H "Authorization: Bearer YOUR_API_KEY"
import requests
import json
headers = {"Authorization": "Bearer YOUR_API_KEY"}
# Fetch the taxonomy, stream into a JSON Lines file
with requests.get("https://api.globalwebindex.com/v3/taxonomy", headers=headers, stream=True) as response:
response.raise_for_status() # Check for error status
with open("gwi_taxonomy.jsonl", "w") as file: # Open a file for caching
buffer = "" # Initialize a buffer
for chunk in response.iter_content(chunk_size=8192): # Iterate over response chunks
buffer += chunk.decode('utf-8', errors='ignore') # Add decoded chunk to buffer
while True:
try:
obj, index = json.JSONDecoder().raw_decode(buffer) # Get 1st object & its end index
file.write(json.dumps(obj) + "\n") # Write object, add line break
buffer = buffer[index:].lstrip() # Remove object from buffer
except ValueError: # - If no object is found
break # add another chunk to buffer
print("Taxonomy cached successfully!")
Question Code: q47a
Name: Reasons for Using Social Media (To Q3 2020)
Description: What are your main reasons for using social media?
Namespace: core
Datapoints: [{'datapoint': 'q47a_17', 'name': 'To organize social events (To Q3 2016)', 'order': {'value': 17}}, {'datapoint': 'q47a_11', 'name': 'To follow celebrities / celebrity news', 'order': {'value': 4}}, {'datapoint': 'q47a_6', 'name': 'To find funny or entertaining content', 'order': {'value': 3}}, {'datapoint': 'q47a_9', 'name': 'Because a lot of my friends are on them'}, {'datapoint': 'q47a_8', 'name': 'To fill up spare time', 'order': {'value': 2}}, {'datapoint': 'q47a_4', 'name': 'To meet new people', 'order': {'value': 6}}, {'datapoint': 'q47a_16', 'name': 'To network for work', 'order': {'value': 7}}, {'datapoint': 'q47a_14', 'name': 'To research / find products to buy', 'order': {'value': 9}}, {'datapoint': 'q47a_5', 'name': 'To share photos or videos with others', 'order': {'value': 12}}, {'datapoint': 'q47a_7', 'name': 'To stay up-to-date with news and current events', 'order': {'value': 14}}, {'datapoint': 'q47a_19', 'name': 'To watch / follow sports events', 'order': {'value': 15}}, {'datapoint': 'q47a_12', 'name': 'They are just one of the sites I always tend to visit (To Q3 2016)', 'order': {'value': 16}}, {'datapoint': 'q47a_15', 'name': 'To promote my work (To Q3 2016)', 'order': {'value': 18}}, {'datapoint': 'q47a_2', 'name': 'To share my opinion', 'order': {'value': 11}}, {'datapoint': 'q47a_3', 'name': "To share details of what I'm doing in my daily life", 'order': {'value': 10}}, {'datapoint': 'q47a_1', 'name': 'To stay in touch with what my friends are doing', 'order': {'value': 13}}, {'datapoint': 'q47a_10', 'name': 'General networking with other people', 'order': {'value': 1}}, {'datapoint': 'q47a_13', 'name': "To make sure I don't miss out on anything", 'order': {'value': 5}}, {'datapoint': 'q47a_18', 'name': 'To promote / support charitable causes', 'order': {'value': 8}}]
Question Code: q42011
Name: Named Social Media / Messaging Services Used
Description: How often do you visit or use these services?
Namespace: core
Datapoints: [{'datapoint': 'q42011_7', 'name': 'Likee (Select Markets Only)', 'order': {'value': 368}}, {'datapoint': 'q42011_31', 'name': 'Snapchat', 'order': {'value': 386}}, {'datapoint': 'q42011_48', 'name': 'Telegram Messenger', 'order': {'value': 390}}, {'datapoint': 'q42011_35', 'name': 'Viadeo (Select Markets Only)', 'order': {'value': 396}}, {'datapoint': 'q42011_44', 'name': 'Skype', 'order': {'value': 385}}, {'datapoint': 'q42011_32102', 'name': 'Clubhouse', 'order': {'value': 349}}, {'datapoint': 'q42011_18', 'name': 'Inke (China Only)', 'order': {'value': 359}}, {'datapoint': 'q42011_34', 'name': 'TikTok', 'order': {'value': 393}}, {'datapoint': 'q42011_38', 'name': 'Gadu-Gadu (GG) (Poland Only)', 'order': {'value': 356}}, {'datapoint': 'q42011_43', 'name': 'LINE', 'order': {'value': 369}}, {'datapoint': 'q42011_22103', 'name': 'ShareChat (India Only)', 'order': {'value': 382}}, {'datapoint': 'q42011_46', 'name': 'SOMA Messenger (Egypt Only)', 'order': {'value': 387}}, {'datapoint': 'q42011_49', 'name': 'Tencent QQ (China Only)', 'order': {'value': 391}}, {'datapoint': 'q42011_36', 'name': 'Yizhibo (China Only)', 'order': {'value': 406}}, {'datapoint': 'q42011_55', 'name': 'Apple iMessage', 'order': {'value': 342}}, {'datapoint': 'q42011_58', 'name': 'Signal (Select Markets Only)', 'order': {'value': 383}}, {'datapoint': 'q42011_54', 'name': 'Zalo (Vietnam Only)', 'order': {'value': 407}}, {'datapoint': 'q42011_21', 'name': "Copains d'Avant (France Only)", 'order': {'value': 350}}, {'datapoint': 'q42011_42105', 'name': 'Yalla (Egypt, Saudi Arabia and UAE Only)', 'order': {'value': 405}}, {'datapoint': 'q42011_56', 'name': 'Byte (Select Markets Only)', 'order': {'value': 347}}, {'datapoint': 'q42011_19', 'name': '5channel (Japan Only)', 'order': {'value': 341}}, {'datapoint': 'q42011_57', 'name': 'Discord', 'order': {'value': 352}}, {'datapoint': 'q42011_2', 'name': 'Bigo (UAE Only)', 'order': {'value': 345}}, {'datapoint': 'q42011_28', 'name': 'Odnoklassniki (Russia Only)', 'order': {'value': 377}}, {'datapoint': 'q42011_32101', 'name': 'MX TakaTak (India Only)', 'order': {'value': 374}}, {'datapoint': 'q42011_42218', 'name': 'BeReal (Select Markets Only)', 'order': {'value': 344}}, {'datapoint': 'q42011_4', 'name': 'Helo (India Only)', 'order': {'value': 357}}, {'datapoint': 'q42011_8', 'name': 'Meipai (China Only)', 'order': {'value': 372}}, {'datapoint': 'q42011_22316', 'name': 'Mastodon', 'order': {'value': 371}}, {'datapoint': 'q42011_41', 'name': 'Kakao Talk (South Korea Only)', 'order': {'value': 362}}, {'datapoint': 'q42011_42', 'name': 'kik Messenger', 'order': {'value': 363}}, {'datapoint': 'q42011_51', 'name': 'WeChat', 'order': {'value': 400}}, {'datapoint': 'q42011_1', 'name': 'Badoo (To Q2 2024)', 'order': {'value': 408}}, {'datapoint': 'q42011_12101', 'name': 'Triller (USA Only)', 'order': {'value': 394}}, {'datapoint': 'q42011_12373', 'name': 'WeAre8 (Australia, UK and USA Only)', 'order': {'value': 399}}, {'datapoint': 'q42011_9', 'name': 'Neighbourly (New Zealand Only)', 'order': {'value': 375}}, {'datapoint': 'q42011_16', 'name': 'Xiaohongshu (China, Malaysia and Singapore Only)', 'order': {'value': 403}}, {'datapoint': 'q42011_32103', 'name': 'Chingari (India Only)', 'order': {'value': 348}}, {'datapoint': 'q42011_6', 'name': 'KakaoStory (South Korea Only)', 'order': {'value': 361}}, {'datapoint': 'q42011_32213', 'name': 'Koo (Bulgaria and India Only)', 'order': {'value': 364}}, {'datapoint': 'q42011_26', 'name': 'LinkedIn', 'order': {'value': 370}}, {'datapoint': 'q42011_27', 'name': 'Nextdoor (Select Markets Only)', 'order': {'value': 376}}, {'datapoint': 'q42011_10', 'name': 'nk.pl (Poland Only, to Q2 2023)', 'order': {'value': 409}}, {'datapoint': 'q42011_47', 'name': 'Tango', 'order': {'value': 388}}, {'datapoint': 'q42011_50', 'name': 'Viber', 'order': {'value': 397}}, {'datapoint': 'q42011_32104', 'name': 'Moj (India Only)', 'order': {'value': 373}}, {'datapoint': 'q42011_13', 'name': 'Tumblr', 'order': {'value': 395}}, {'datapoint': 'q42011_25', 'name': 'Instagram', 'order': {'value': 360}}, {'datapoint': 'q42011_14', 'name': 'X', 'order': {'value': 402}}, {'datapoint': 'q42011_5', 'name': 'Imgur', 'order': {'value': 358}}, {'datapoint': 'q42011_30', 'name': 'Reddit', 'order': {'value': 381}}, {'datapoint': 'q42011_32112', 'name': 'Kuaishou (Select Markets Only)', 'order': {'value': 365}}, {'datapoint': 'q42011_20', 'name': 'Baidu Tieba (China Only)', 'order': {'value': 343}}, {'datapoint': 'q42011_29', 'name': 'Qzone (China Only)', 'order': {'value': 380}}, {'datapoint': 'q42011_17', 'name': 'XING (Austria and Germany Only)', 'order': {'value': 404}}, {'datapoint': 'q42011_53', 'name': 'WhatsApp', 'order': {'value': 401}}, {'datapoint': 'q42011_45', 'name': 'SNOW (Select Markets Only) (Up to Q2 2022)', 'order': {'value': 410}}, {'datapoint': 'q42011_40', 'name': 'Houseparty (To Q2 2021)', 'order': {'value': 411}}, {'datapoint': 'q42011_15', 'name': 'VK (Russia & Czech Republic Only)', 'order': {'value': 398}}, {'datapoint': 'q42011_42397', 'name': 'Threads', 'order': {'value': 392}}, {'datapoint': 'q42011_32', 'name': 'Taringa (Select Markets Only)', 'order': {'value': 389}}, {'datapoint': 'q42011_3', 'name': 'Facebook', 'order': {'value': 354}}, {'datapoint': 'q42011_12205', 'name': 'Kumu (Philippines Only)', 'order': {'value': 366}}, {'datapoint': 'q42011_22326', 'name': 'Dewu (China Only)', 'order': {'value': 351}}, {'datapoint': 'q42011_32433', 'name': 'Quora', 'order': {'value': 379}}, {'datapoint': 'q42011_11', 'name': 'Pinterest', 'order': {'value': 378}}, {'datapoint': 'q42011_32449', 'name': 'BlueSky', 'order': {'value': 346}}, {'datapoint': 'q42011_22413', 'name': 'Lemon8 (Select Markets Only)', 'order': {'value': 367}}, {'datapoint': 'q42011_12', 'name': 'Sina Weibo (China Only)', 'order': {'value': 384}}, {'datapoint': 'q42011_37', 'name': 'Facebook Messenger', 'order': {'value': 355}}, {'datapoint': 'q42011_23', 'name': 'Douyin Huoshan (China Only)', 'order': {'value': 353}}]
Suffixes: [{'suffix': '2', 'name': 'Daily', 'order': {'value': 2}}, {'suffix': '1', 'name': 'More than once a day', 'order': {'value': 1}}, {'suffix': '3', 'name': 'Weekly', 'order': {'value': 3}}, {'suffix': '4', 'name': 'Monthly', 'order': {'value': 4}}]
...
Was this page helpful?